Search results for "Model inversion"
showing 5 items of 5 documents
Deep Importance Sampling based on Regression for Model Inversion and Emulation
2021
Understanding systems by forward and inverse modeling is a recurrent topic of research in many domains of science and engineering. In this context, Monte Carlo methods have been widely used as powerful tools for numerical inference and optimization. They require the choice of a suitable proposal density that is crucial for their performance. For this reason, several adaptive importance sampling (AIS) schemes have been proposed in the literature. We here present an AIS framework called Regression-based Adaptive Deep Importance Sampling (RADIS). In RADIS, the key idea is the adaptive construction via regression of a non-parametric proposal density (i.e., an emulator), which mimics the posteri…
Empirical and physical estimation of Canopy Water Content from CHRIS/PROBA data
2013
20 páginas, 4 tablas, 7 figuras.
Comparison of Machine Learning Methods in Stochastic Skin Optical Model Inversion
2020
In this study, we compare six different machine learning methods in the inversion of a stochastic model for light propagation in layered media, and use the inverse models to estimate four parameters of the skin from the simulated data: melanin concentration, hemoglobin volume fraction, and thicknesses of epidermis and dermis. The aim of this study is to determine the best methods for stochastic model inversion in order to improve current methods in skin related cancer diagnostics and in the future develop a non-invasive way to measure the physical parameters of the skin based partially on the results of the study. Of the compared methods, which are convolutional neural network, multi-layer …
Deep Gaussian processes for biogeophysical parameter retrieval and model inversion
2020
Parameter retrieval and model inversion are key problems in remote sensing and Earth observation. Currently, different approximations exist: a direct, yet costly, inversion of radiative transfer models (RTMs); the statistical inversion with in situ data that often results in problems with extrapolation outside the study area; and the most widely adopted hybrid modeling by which statistical models, mostly nonlinear and non-parametric machine learning algorithms, are applied to invert RTM simulations. We will focus on the latter. Among the different existing algorithms, in the last decade kernel based methods, and Gaussian Processes (GPs) in particular, have provided useful and informative so…
Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with …
2011
International audience; Neural networks trained over radiative transfer simulations constitute the basis of several operational algorithms to estimate canopy biophysical variables from satellite reflectance measurements. However, only little attention was paid to the training process which has a major impact on retrieval performances. This study focused on the several modalities of the training process within neural network estimation of LAI, FCOVER and FAPAR biophysical variables. Performances were evaluated over both actual experimental observations and model simulations. The SAIL and PROSPECT radiative transfer models were used here to simulate the training and the synthetic test dataset…